Publication: Tensor Approximation for Multidimensional and Multivariate Data
dc.contributor.author | Pajarola, Renato | |
dc.contributor.author | Suter, Susanne | |
dc.contributor.author | Yang, Haiyang | |
dc.contributor.author | Ballester, Rafael | |
dc.contributor.funder | Seventh Framework Programme | |
dc.contributor.funder | Swiss National Science Foundation | |
dc.contributor.ror | https://ror.org/02jjdwm75 | |
dc.date.accessioned | 2024-07-08T13:15:40Z | |
dc.date.available | 2024-07-08T13:15:40Z | |
dc.date.issued | 2021 | |
dc.description.abstract | Tensor decomposition methods and multilinear algebra are powerful tools to cope with challenges around multidimensional and multivariate data in computer graphics,image processing and data visualization,in particular with respect to compact representation and processing of increasingly large-scale data sets. Initially proposed as an extension of the concept of matrix rank for 3 and more dimensions,tensor decomposition methods have found applications in a remarkably wide range of disciplines. We briefly review the main concepts of tensor decompositions and their application to multidimensional visual data. Furthermore,we will include a first outlook on porting these techniques to multivariate data such as vector and tensor fields. | |
dc.description.fundingtype | Acknowledgements This work was partially supported by the University of Zurich’s Forschungskredit “Candoc” (grant numbers FK-16-012 and 53511401) a Swiss National Science Foundation grant (SNF) (project nº200021_132521) la Hasler Foundation grant (project number 12097) and the EU FP7 People Programme (Marie Curie Actions) under REA Grant Agreement n?290227. Furthermore, we would like to acknowledge the Computer-Assisted Paleoanthropology group and the Visualization and MultiMedia Lab at University of Zürich for the acquisition of the Hazelnut dataset (https://www.ifi.uzh.ch/en/vmml/research/datasets.html in Fig. 15. Also we acknowledge the Johns Hopkins Turbulence Database http://turbulence.pha.jhu.edu/ for the data used in Fig. 16 as well as their forced MHD simulation data http://turbulence.pha.jhu.edu/Forced_ MHD_turbulence.aspx used in our experiments. | |
dc.format | application/pdf | |
dc.identifier.citation | Pajarola, R., Suter, S. K., Ballester-Ripoll, R., & Yang, H. (2021). Tensor approximation for multidimensional and multivariate data. In Anisotropy Across Fields and Scales (pp. 73-98). Springer International Publishing. | |
dc.identifier.doi | https://doi.org/10.1007/978-3-030-56215-1_4 | |
dc.identifier.isbn | 9783030562144 | |
dc.identifier.issn | 16123786 | |
dc.identifier.officialurl | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85102587385&doi=10.1007%2f978-3-030-56215-1_4&partnerID=40&md5=35ff9f462672b3644b0372c8a14fb4a2 | |
dc.identifier.publicationtitle | Anisotropy Across Fields and Scales | |
dc.identifier.uri | https://hdl.handle.net/20.500.14417/3193 | |
dc.journal.title | Mathematics and Visualization | |
dc.language.iso | eng | |
dc.page.final | 98 | |
dc.page.initial | 73 | |
dc.page.total | 12 | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.relation.department | Sci Tech (Data Science) | |
dc.relation.entity | IE University | |
dc.relation.projectID | REA: 290227 | |
dc.relation.projectID | SNF: 200021_132521 | |
dc.relation.school | IE School of Science & Technology | |
dc.rights | Attribution 4,0 International | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.other | Anisotropy | |
dc.subject.other | Data visualization | |
dc.subject.other | Image processing | |
dc.subject.other | Tensors | |
dc.subject.other | Visualization | |
dc.subject.other | Compact representation | |
dc.subject.other | Large scale data sets | |
dc.subject.other | Matrix rank | |
dc.subject.other | Multi-linear algebras | |
dc.subject.other | Multivariate data | |
dc.subject.other | Tensor approximation | |
dc.subject.other | Tensor decomposition | |
dc.subject.other | Tensor fields | |
dc.subject.other | Data handling | |
dc.title | Tensor Approximation for Multidimensional and Multivariate Data | |
dc.type | info:eu-repo/semantics/conferenceObject | |
dc.version.type | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
person.identifier.scopus-author-id | 6701624951 | |
person.identifier.scopus-author-id | 55017879400 | |
person.identifier.scopus-author-id | 55813449900 | |
person.identifier.scopus-author-id | 57222390117 | |
relation.isAuthorOfPublication | 6f756541-9eb4-430c-9664-1833c080ce57 | |
relation.isAuthorOfPublication.latestForDiscovery | 6f756541-9eb4-430c-9664-1833c080ce57 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Tensor Approximation for Multidimensional and Multivariate Data.pdf
- Size:
- 10.73 MB
- Format:
- Adobe Portable Document Format