Learning Staged Trees from Incomplete Data

dc.conference.date2024-09-11/13
dc.conference.placeNijmegen, the Netherlands
dc.conference.titleThe proceedings for the 12th International Conference on Probabilistic Graphical Models (PGM 2024)
dc.contributor.authorStorror Carter, Jack
dc.contributor.authorLeonelli, Manuele
dc.contributor.authorRiccomagno, Eva
dc.contributor.authorVarando, Gherardo
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-04T13:03:40Z
dc.date.issued2024
dc.description.abstractStaged trees are probabilistic graphical models capable of representing any class of nonsymmetric independence via a coloring of their vertices. Several structural learning routines have been defined and implemented to learn staged trees from data, under the frequentist or Bayesian paradigm. They assume a data set has been observed fully and, in practice, observations with missing entries are either dropped or imputed before learning the model. Here, we introduce the first algorithms for staged trees that handle missingness within the learning of the model. To this end, we characterize the likelihood of staged tree models in the presence of missing data and discuss pseudo-likelihoods that approximate it. A structural expectation-maximization algorithm estimating the model directly from the full likelihood is also implemented and evaluated. A computational experiment showcases the performance of the novel learning algorithms, demonstrating that it is feasible to account for different missingness patterns when learning staged trees.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationCarter, J. S., Leonelli, M., Riccomagno, E. & Varando, G. (2024). Learning staged trees from incomplete data. In J. Kwisthout & S. Renooij (Eds.), Proceedings of the 12th International Conference on Probabilistic Graphical Models (pp. 231–252). PMLR. https://proceedings.mlr.press/v246/carter24a.html
dc.identifier.officialurlhttps://proceedings.mlr.press/v246/carter24a.html
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3913
dc.language.isoen
dc.page.total22
dc.publisherProceedings of Machine Learning Research
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed
dc.subjectEM algorithm
dc.subjectMissing data
dc.subjectPseudo-Likelihood
dc.subjectStaged trees
dc.subjectStructural learning
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleLearning Staged Trees from Incomplete Data
dc.typeinfo:eu-repo/semantics/conferenceObjec
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Carter et al 2024 - open access.pdf
Tamaño:
1.4 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: