Privacy, Data and the Individual. Diferentially Data sets : methods and mitigations series

dc.contributor.authorSoria Comas, Jordi
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2024-07-02T16:08:59Z
dc.date.available2024-07-02T16:08:59Z
dc.date.issued2020-03-27
dc.description.abstractData set releases are the most convenient way to make data available for secondary use: in principle, they allow analysts to carry out any data analysis task (e.g., exploratory data analysis). However, data set releases are a great threat to privacy. This is the issue that privacy preserving data publishing (PPDP) aims to address. Among the available sanitization methods, differential privacy (DP) stands out for the strong privacy guarantees it offers. The fact that DP offers protection regardless of the side information available to intruders is very convenient in the current landscape (pervasive data collection and many untrusted data controllers). However, such strong guarantees have a downside: the information loss we incur when using DP is likely to be large. As a result, there is no standard methodology to generate DP data sets and the use of DP for PPDP is rather limited. In this work, we review the main approaches used in the generation of DP data sets (i.e., histograms, and record aggregation and masking), and describe the advantages and the limitations of each of these approaches in terms of computational cost and information loss. Next, we describe some of the strategies that have been proposed to mitigate the previously described limitations. Among these, we highlight two common strategies: to increase the privacy budget, and to use a relaxed version of DP. Using large privacy budgets is common; however, it has an important downside: DP itself becomes meaningless. Using relaxed versions of DP allows us reduce the information loss while keeping reduced but meaningful privacy guarantees.
dc.description.keywordData set
dc.description.keywordConjuntos de datos
dc.description.keywordAnalysis
dc.description.keywordAnálisis
dc.description.keywordPersonal Data
dc.description.keywordDatos personales
dc.description.keywordPrivacy
dc.description.keywordPrivacidad
dc.description.keywordMarketing
dc.description.keywordTechnology
dc.description.keywordTecnología
dc.description.keywordGeneral Data Protection Regulation
dc.description.keywordGDPR
dc.description.keywordRegulación General de Protección de Datos
dc.description.keywordRGPD
dc.formatapplication/pdf
dc.identifier.citationSoria-Comas, J. (2020). Privacy, Data and the Individual. Diferentially Data sets : methods and mitigations series. Zenodo. https://doi.org/10.5281/zenodo.3731233
dc.identifier.doihttps://doi.org/10.5281/zenodo.3731233
dc.identifier.urihttps://hdl.handle.net/20.500.14417/2765
dc.language.isoen
dc.licensehttps://creativecommons.org/licenses/by/4.0/legalcode
dc.publisherIE University
dc.relation.centerIE Center for The Governance of Change
dc.relation.entityIE University
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/legalcode
dc.subject.keywordData set
dc.subject.keywordConjuntos de datos
dc.subject.keywordAnalysis
dc.subject.keywordAnálisis
dc.subject.keywordPersonal Data
dc.subject.keywordDatos personales
dc.subject.keywordPrivacy
dc.subject.keywordPrivacidad
dc.subject.keywordMarketing
dc.subject.keywordTechnology
dc.subject.keywordTecnología
dc.subject.keywordGeneral Data Protection Regulation
dc.subject.keywordGDPR
dc.subject.keywordRegulación General de Protección de Datos
dc.subject.keywordRGPD
dc.titlePrivacy, Data and the Individual. Diferentially Data sets : methods and mitigations series
dc.typeinfo:eu-repo/semantics/report
dc.version.typeinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
3731233.pdf
Tamaño:
769.25 KB
Formato:
Adobe Portable Document Format