Publication: Predicting risk of dyslexia with an online gamified test
dc.contributor.author | Baeza Yates, Ricardo | |
dc.contributor.author | Ali, Abdullah | |
dc.contributor.author | Bigham, Jeffrey | |
dc.contributor.author | Serra, Miquel | |
dc.contributor.author | Rello, Luz | |
dc.contributor.funder | National Science Foundation | |
dc.contributor.funder | Universidad San Jorge | |
dc.contributor.ror | https://ror.org/02jjdwm75 | |
dc.date.accessioned | 2024-07-08T13:14:21Z | |
dc.date.available | 2024-07-08T13:14:21Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Dyslexia is a specific learning disorder related to school failure. Detection is both crucial and challenging,especially in languages with transparent orthographies,such as Spanish. To make detecting dyslexia easier,we designed an online gamified test and a predictive machine learning model. In a study with more than 3,600 participants,our model correctly detected over 80% of the participants with dyslexia. To check the robustness of the method we tested our method using a new data set with over 1,300 participants with age customized tests in a different environment -a tablet instead of a desktop computer- reaching a recall of over 78% for the class with dyslexia for children 12 years old or older. Our work shows that dyslexia can be screened using a machine learning approach. An online screening tool in Spanish based on our methods has already been used by more than 200,000 people. © 2020 Rello et al. This is an open access article distributed under the terms of the Creative Commons Attribution License,which permits unrestricted use,distribution,and reproduction in any medium,provided the original author and source are credited. | |
dc.description.fundingtype | Financial support was provided by a grant from the US Department of 249 Education NIDRR (grant number H133A130057, J.B. https://www. ed.gov/); and a 250 grant from the National Science Foundation (grant number IIS-1618784, J. B. and L.R., 251 https://www.nsf.gov/). We thank the volunteers that participated in this study | |
dc.description.fundingtype | the voice actress Nikki García and the speech therapists who reviewed the test Alicia Bailey Garrido, Daniel Cubilla Bonnetier, Nancy Cushen-White, Ruth Rozensztejn and Daniela Sánchez Alarcón. As well as the professionals from the educational centers who helped reviewing some cases of the ground-truth from the data set: Ángeles Álvarez-Cedrón Angela Biola Quintana Pérez, Mireia Centeno, Patricia Clemente, Pilar Del Valle Sanz, Esther Gamiz, Paloma García Rodríguez, José Manuel González Sanz, Cristina Martín, Miguel Ángel Matute and Ana Olivares Valencia. We thank the specialized centres for providing participants with diagnosed dyslexia: Academia Eklekticos, ADAH SLP Vigo, Aprèn+, Atenea Psicosalud & Psicoeducativo, CAMINS Logopèdia, Psicologia i Dificultats d’Aprenentatge, Centre Elisenda Currià, Centre Espais, Centre Neureduca, Claudia Squella, CREIX Centre d’Assessorament Psicopedagògic Barcelona, CREIX—Centro de Desarrollo Infantil Mallorca, Didàctica-Rubí, Educasapiens, Engracia Rodríguez-López Domingo, Gabinete Psicología Marta Pellejero Escobedo, Isabel Barros, Logopèdics Lleida, Novacadèmia from Barcelona, Sant Feliu de Codines and Caldes de Montbui, Tangram Barcelona, Uditta, UTAE (Unitat de Trastorn de l’Aprenentatge Escolar) and Valley Speech Language and Learning Center Texas. We thank the following non-profit organizations for providing participants and spreading the call for participation: ADA Dislexia Aragón, Adixmur, Asociación ACNIDA, Asociación Catalana de la Dislexia, Associació de Dislèxia Lleida, COPOE (Confederación de Organizaciones de Psicopedagogía y Orientación de España), COPOE (Orientación y Educación Madrid) Disfam, Disfam Argentina, Dislexia & Dispraxia Argentina, Fundació Mirades Educatives. Fundación Educere, Fundación Marillac, Fundación Valsé and Madrid con la Dislexia. We are also very grateful to the schools and the universities that participated in the main study: CEIP Bisbe Climent, CEIP Foro Romano, CEIP Juan XXIII, CEIP Los Ángeles, CEIP Maestro Juan de Ávila, CEIP Ntra. Sra. de la Salud, CEIP Nuestra Señora de los Ángeles, CEIP San José de Calasanz Fraga, CEIP San José de Calasanz Getafe, CEPA Ignacio Zuloaga Helduen Heziketa Iraunkorra, CES Vega Media, Colegio Adventista Rigel, Colegio Alborada, Colegio Américo Vespucio, Colegio Areteia, Colegio Concertado Bilingüe Divina Providencia, Colegio de Fomento Las Tablas-Valverde, Colegio de las Hermanas de la Caridad de Santa Ana, Colegio Gimnasio los Pinares, Colegio Hijas de San José, Colegio La Milagrosa, Colegio Madre Paulina de Chiguayante, Colegio María Auxiliadora de Alicante, Colegio María Auxiliadora de Sepúlveda, Colegio María Auxiliadora de Sueca, Colegio María Auxiliadora de Terrasa, Colegio María Auxiliadora de Torrent, Colegio María Auxiliadora de Valencia, Colegio María Auxiliadora de Zaragoza, Colegio María Inmaculada de Concepción, Colegio María Moliner, Colegio Matilde Huici Navas, Colegio Miguel Servet, Colegio Nuestra Señora de la Soledad, Colegio Obispo Perelló, Colegio Rural Agrupado Tres Riberas, Colegio San Gabriel, Colegio Santa Ana Fraga, Colegio Santa Ana Zaragoza, Colegio Santa Dorotea, Colegio Santa María del Pilar Marianistas de Zaragoza,Colegio Virgen de la Peña, CPI Castroverde, Escola 4 Vents, Escola Comptes de Torregrossa, Escola Les Cometes, Escola Mare de Dèu del Priorat, Escola Pepa Colomer, Escola Sol Ixent, GSD Guadarrama, IES Azuer, IES Bajo Cinca, IES Ben Gabirol, IES Corona de Aragón en Zaragoza, IES do Camiño, IES Leonardo de Chabacier, IES Puerta del Andévalo, IES Ramón J. Sender, IES Rey Fernando VI, IES de Bocairent, University of Valencia, University Don Bosco and University San Jorge. Finally, we thank the schools who participated in the second user study: Centro Infanta Leonor, Colegio Sagrado Corazón, Colegio San Antonio, Colegio San Patricio, Colegio San Prudencio, Colegio Santo Domingo, Colegio Urkique, Colegio Vizcaya, Escolapios de Getafe and Escuelas Bosque. | |
dc.format | application/pdf | |
dc.identifier.citation | Rello, L., Baeza Yates, R., Ali, A., Bigham, J. P., & Serra, M. (2020). Predicting risk of dyslexia with an online gamified test. Plos one, 15(12). | |
dc.identifier.doi | https://doi.org/10.1371/journal.pone.0241687 | |
dc.identifier.issn | 19326203 | |
dc.identifier.officialurl | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097123728&doi=10.1371%2fjournal.pone.0241687&partnerID=40&md5=af988696d1805c4b5ee8f31e2530d3b9 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14417/3068 | |
dc.issue.number | 12 December | |
dc.journal.title | PLoS ONE | |
dc.language.iso | eng | |
dc.page.total | 3 | |
dc.publisher | Public Library of Science | |
dc.relation.department | Information Systems & Technology | |
dc.relation.entity | IE University | |
dc.relation.projectID | NSF: IIS-1618784 | |
dc.relation.school | IE Business School | |
dc.rights | Attribution 4,0 International | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.other | adolescent | |
dc.subject.other | child | |
dc.subject.other | controlled clinical trial | |
dc.subject.other | controlled study | |
dc.subject.other | dyslexia | |
dc.subject.other | female | |
dc.subject.other | human | |
dc.subject.other | machine learning | |
dc.subject.other | major clinical study | |
dc.subject.other | male | |
dc.subject.other | mass screening | |
dc.subject.other | online system | |
dc.subject.other | prediction | |
dc.subject.other | risk assessment | |
dc.subject.other | risk factor | |
dc.subject.other | attention | |
dc.subject.other | dyslexia | |
dc.subject.other | language | |
dc.subject.other | neuropsychological test | |
dc.subject.other | pathophysiology | |
dc.subject.other | phonetics | |
dc.subject.other | physiology | |
dc.subject.other | reading | |
dc.subject.other | semantics | |
dc.subject.other | short term memory | |
dc.subject.other | video game | |
dc.subject.other | vision | |
dc.subject.other | Adolescent | |
dc.subject.other | Attention | |
dc.subject.other | Child | |
dc.subject.other | Dyslexia | |
dc.subject.other | Female | |
dc.subject.other | Humans | |
dc.subject.other | Language | |
dc.subject.other | Machine Learning | |
dc.subject.other | Male | |
dc.subject.other | Memory | |
dc.subject.other | Short-Term | |
dc.subject.other | Neuropsychological Tests | |
dc.subject.other | Phonetics | |
dc.subject.other | Reading | |
dc.subject.other | Risk Factors | |
dc.subject.other | Semantics | |
dc.subject.other | Video Games | |
dc.subject.other | Vision | |
dc.subject.other | Ocular | |
dc.title | Predicting risk of dyslexia with an online gamified test | |
dc.type | info:eu-repo/semantics/article | |
dc.version.type | info:eu-repo/semantics/publishedVersion | |
dc.volume.number | 15 | |
dspace.entity.type | Publication | |
person.identifier.scopus-author-id | 37040946700 | |
person.identifier.scopus-author-id | 7004433908 | |
person.identifier.scopus-author-id | 57013967200 | |
person.identifier.scopus-author-id | 16238221500 | |
person.identifier.scopus-author-id | 7203064312 | |
relation.isAuthorOfPublication | 348a5d9a-4c60-4460-80fc-af50929eabd3 | |
relation.isAuthorOfPublication.latestForDiscovery | 348a5d9a-4c60-4460-80fc-af50929eabd3 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Predicting risk of dyslexia with an online gamified test.pdf
- Size:
- 869.56 KB
- Format:
- Adobe Portable Document Format