You Only Derive Once (YODO): Automatic Differentiation for Efficient Sensitivity Analysis in Bayesian Networks

dc.conference.date2022-10-05/07
dc.conference.placeAlmería, Spain
dc.conference.titleThe 11th International Conference on Probabilistic Graphical Models
dc.contributor.authorBallester, Rafael
dc.contributor.authorLeonelli, Manuele
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-11-25T15:46:11Z
dc.date.issued2022
dc.description.abstractSensitivity analysis measures the influence of a Bayesian network’s parameters on a quantity of interest defined by the network, such as the probability of a variable taking a specific value. In particular, the so-called sensitivity value measures the quantity of interest’s partial derivative with respect to the network’s conditional probabilities. However, finding such values in large networks with thousands of parameters can become computationally very expensive. We propose to use automatic differentiation combined with exact inference to obtain all sensitivity values in a single pass. Our method first marginalizes the whole network once using e.g. variable elimination and then backpropagates this operation to obtain the gradient with respect to all input parameters. We demonstrate our routines by ranking all parameters by importance on a Bayesian network modeling humanitarian crises and disasters, and then show the method’s efficiency by scaling it to huge networks with up to 100’000 parameters. An implementation of the methods using the popular machine learning library PyTorch is freely available.
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationBallester-Ripoll, R., & Leonelli, M. (2022). You Only Derive Once (YODO): Automatic Differentiation for Efficient Sensitivity Analysis in Bayesian Networks. In A. Salmerón & R. Rumí (Eds.), Proceedings of The 11th International Conference on Probabilistic Graphical Models (Vol. 186, pp. 169-180). PMLR.
dc.identifier.officialurlhttps://proceedings.mlr.press/v186/ballester-ripoll22a
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3891
dc.language.isoen
dc.page.total12
dc.publisherProceedings of Machine Learning Research
dc.relation.departmentComputer Science and AI
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.en
dc.titleYou Only Derive Once (YODO): Automatic Differentiation for Efficient Sensitivity Analysis in Bayesian Networks
dc.typeinfo:eu-repo/semantics/conferenceObjec
dc.version.typeinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication6f756541-9eb4-430c-9664-1833c080ce57
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscovery6f756541-9eb4-430c-9664-1833c080ce57

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
You Only Derive Once (YODO) Automatic Di erentiation for E cient Sensitivity Analysis in Bayesian Networks.pdf
Tamaño:
361.36 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: