Privacy, Data and the Individual. Diferentially Data sets : formal vs empirical approaches to data anonymity

dc.contributor.authorFrancis, Paul
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2024-07-02T16:09:00Z
dc.date.available2024-07-02T16:09:00Z
dc.date.issued2019-11-01
dc.description.abstractThe focus of data anonymity research by computer scientists is almost completely on methods with formal guarantees of anonymity, especially differential privacy. The usefulness of mechanisms with formal guarantees, however, has so far been disappointing. This article argues that computer scientists should be open to and encouraged to work on empirical data anonymization mechanisms as well—in much the same way that researchers work on both formal and empirical approaches to crypto. This article describes differential privacy and explains its benefits and shortcomings. It also describes a recently developed empirical data anonymization mechanism called Diffix, and describes how transparency and programs that incentivize white-hat attacks, such as bounty programs, can build understanding and confidence in empirical approaches. The article concludes that there is a need for both formal and empirical research on data anonymity.
dc.description.keywordData set
dc.description.keywordConjuntos de datos
dc.description.keywordAnalysis
dc.description.keywordAnalysis
dc.description.keywordPersonal Data
dc.description.keywordDatos personales
dc.description.keywordPrivacy
dc.description.keywordPrivacidad
dc.description.keywordMarketing
dc.description.keywordTechnology
dc.description.keywordTecnología
dc.description.keywordGeneral Data Protection Regulation
dc.description.keywordGDPR
dc.description.keywordRegulación General de Protección de Datos
dc.description.keywordRGPD
dc.formatapplication/pdf
dc.identifier.citationFrancis, P. (2019). Privacy, Data and the Individual. Diferentially Data sets : formal vs empirical approaches to data anonymity. Zenodo. https://doi.org/10.5281/zenodo.3731250
dc.identifier.doihttps://doi.org/10.5281/zenodo.3731250
dc.identifier.urihttps://hdl.handle.net/20.500.14417/2767
dc.language.isoen
dc.licensehttps://creativecommons.org/licenses/by/4.0/legalcode
dc.publisherIE University
dc.relation.centerIE Center for the Governance of Change
dc.relation.entityIE University
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/legalcode
dc.subject.keywordData set
dc.subject.keywordConjuntos de datos
dc.subject.keywordAnalysis
dc.subject.keywordAnalysis
dc.subject.keywordPersonal Data
dc.subject.keywordDatos personales
dc.subject.keywordPrivacy
dc.subject.keywordPrivacidad
dc.subject.keywordMarketing
dc.subject.keywordTechnology
dc.subject.keywordTecnología
dc.subject.keywordGeneral Data Protection Regulation
dc.subject.keywordGDPR
dc.subject.keywordRegulación General de Protección de Datos
dc.subject.keywordRGPD
dc.titlePrivacy, Data and the Individual. Diferentially Data sets : formal vs empirical approaches to data anonymity
dc.typeinfo:eu-repo/semantics/report
dc.version.typeinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
3731250.pdf
Tamaño:
714.74 KB
Formato:
Adobe Portable Document Format