Context-Specific Refinements of Bayesian Network Classifiers

dc.conference.date2024-09-11/13
dc.conference.placeNijmegen, the Netherlands
dc.conference.titleThe proceedings for the 12th International Conference on Probabilistic Graphical Models (PGM 2024)
dc.contributor.authorLeonelli, Manuele
dc.contributor.authorVarando, Gherardo
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-04T16:23:35Z
dc.date.issued2024
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationLeonelli, M., & Varando, G. (2024). Context-Specific Refinements of Bayesian Network Classifiers. In J. Kwisthout & S. Renooij (Eds.), Proceedings of The 12th International Conference on Probabilistic Graphical Models (pp. 182–198). PMLR. https://proceedings.mlr.press/v246/leonelli24a.html
dc.identifier.officialurlhttps://proceedings.mlr.press/v246/leonelli24a.html
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3918
dc.language.isoen
dc.page.total17
dc.publisherProceedings of Machine Learning Research
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleContext-Specific Refinements of Bayesian Network Classifiers
dc.typeinfo:eu-repo/semantics/conferenceObjec
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Leonelli and Varando 2024d - open acces.pdf
Tamaño:
419.72 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: