Symmetry Preservation in Hamiltonian Systems: Simulation and Learning

dc.contributor.authorVaquero Vallina, Miguel
dc.contributor.authorCortés, Jorge
dc.contributor.authorMartín de Diego, David
dc.contributor.funderSpanish Ministry of Science and Innovation
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-04-01T14:48:17Z
dc.date.available2025-04-01T14:48:17Z
dc.date.issued2023-08-30
dc.description.abstractThis work presents a general geometric framework for simulating and learning the dynamics of Hamiltonian systems that are invariant under a Lie group of transformations. This means that a group of symmetries is known to act on the system respecting its dynamics and, as a consequence, Noether’s Theorem, conserved quantities are observed. We propose to simulate and learn the mappings of interest through the construction of G-invariant Lagrangian submanifolds, which are pivotal objects in symplectic geometry. A notable property of our constructions is that the simulated/learned dynamics also preserves the same conserved quantities as the original system, resulting in a more faithful surrogate of the original dynamics than non-symmetry aware methods, and in a more accurate predictor of non-observed trajectories. Furthermore, our setting is able to simulate/learn not only Hamiltonian flows, but any Lie group-equivariant symplectic transformation. Our designs leverage pivotal techniques and concepts in symplectic geometry and geometric mechanics: reduction theory, Noether’s Theorem, Lagrangian submanifolds, momentum mappings, and coisotropic reduction among others. We also present methods to learn Poisson transformations while preserving the underlying geometry and how to endow non-geometric integrators with geometric properties. Thus, this work presents a novel attempt to harness the power of symplectic and Poisson geometry towards simulating and learning problems.
dc.description.peerreviewedyes
dc.description.sponsorshipSevero Ochoa Programme for Centres of Excellence in R&D
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationVaquero, M., Cortés, J., & de Diego, D. M. (2024). Symmetry preservation in Hamiltonian systems: Simulation and Learning. Journal of Nonlinear Science, 34(6), 115. https://doi.org/10.48550/arXiv.2308.16331.
dc.identifier.doihttps://doi.org/10.48550/arXiv.2308.16331
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3690
dc.language.isoen
dc.publisherCornell University
dc.relation.departmentSci Tech (Data Science)
dc.relation.entityIE University
dc.relation.projectIDPID2022-137909NB-C21
dc.relation.projectIDCEX2019- 000904-S
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
dc.titleSymmetry Preservation in Hamiltonian Systems: Simulation and Learning
dc.typeinfo:eu-repo/semantics/workingPaper
dc.version.typeinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication39962106-d87d-4801-af4a-d23249d2cdd1
relation.isAuthorOfPublication.latestForDiscovery39962106-d87d-4801-af4a-d23249d2cdd1

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Symmetry Preservation in Hamiltonian Systems.pdf
Tamaño:
2.16 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
2.83 KB
Formato:
Item-specific license agreed to upon submission
Descripción:

Colecciones