Context-Specific Causal Discovery for Categorical Data Using Staged Trees

dc.conference.date2023-04-25/27
dc.conference.placeValencia, spain
dc.conference.titleProceedings of the 26th International Conference on Artificial Intelligence and Statistics
dc.contributor.authorLeonelli, Manuele
dc.contributor.authorVarando, Gherardo
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-11-25T16:11:41Z
dc.date.issued2023
dc.description.abstractCausal discovery algorithms aim at untangling complex causal relationships from data. Here, we study causal discovery and inference methods based on staged tree models, which can represent complex and asymmetric causal relationships between categorical variables. We provide a first graphical representation of the equivalence class of a staged tree, by looking only at a specific subset of its underlying independences. We further define a new pre-metric, inspired by the widely used structural intervention distance, to quantify the closeness between two staged trees in terms of their corresponding causal inference statements. A simulation study highlights the efficacy of staged trees in uncovering complexes, asymmetric causal relationships from data, and real-world data applications illustrate their use in practical causal analysis.
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationLeonelli, M., & Varando, G. (2023). Context-specific causal discovery for categorical data using staged trees. In F. Ruiz, J. Dy, & J.-W. van de Meent (Eds.), Proceedings of the 26th International Conference on Artificial Intelligence and Statistics (Vol. 206, pp. 8871–8888). PMLR. https://proceedings.mlr.press/v206/leonelli23a.html
dc.identifier.officialurlhttps://proceedings.mlr.press/v206/leonelli23a.html
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3892
dc.language.isoen
dc.page.total18
dc.publisherProceedings of Machine Learning Research
dc.relation.departmentComputer Science and AI
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.en
dc.titleContext-Specific Causal Discovery for Categorical Data Using Staged Trees
dc.typeinfo:eu-repo/semantics/conferenceObjec
dc.version.typeinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
leonelli23a.pdf
Tamaño:
481.83 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: