Learning and interpreting asymmetry-labeled DAGs: a case study on COVID-19 fear

dc.contributor.authorLeonelli, Manuele
dc.contributor.authorVarando, Gherardo
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-04T16:03:13Z
dc.date.issued2024-01-17
dc.description.abstractBayesian networks are widely used to learn and reason about the dependence structure of discrete variables. However, they can only formally encode symmetric conditional independence, which is often too strict to hold in practice. Asymmetry-labeled DAGs have been recently proposed to extend the class of Bayesian networks by relaxing the symmetric assumption of independence and denoting the dependence between the variables of interest. Here, we introduce novel structural learning algorithms for this class of models, which, whilst efficient, allow for a straightforward interpretation of the underlying dependence structure. A comprehensive computational study highlights the efficiency of the algorithms. A real-world data application using data from the Fear of COVID-19 Scale collected in Italy showcases their use in practice.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationLeonelli, M., & Varando, G. (2024). Learning and interpreting asymmetry-labeled DAGs: a case study on COVID-19 fear. Applied Intelligence, 54(2), 1734-1750. https://doi.org/10.1007/s10489-024-05268-6
dc.identifier.doihttps://doi.org/10.1007/s10489-024-05268-6
dc.identifier.issn1573-7497
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s10489-024-05268-6
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3917
dc.issue.number2
dc.journal.titleApplied Intelligence
dc.language.isoen
dc.page.final1750
dc.page.initial1734
dc.page.total29
dc.publisherSpringer Nature
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed
dc.subjectBayesian networks
dc.subjectConditional independence
dc.subjectProbabilistic graphical models
dc.subjectStaged trees
dc.subjectStructural learning
dc.subject.odsODS 3 - Salud y bienestar
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleLearning and interpreting asymmetry-labeled DAGs: a case study on COVID-19 fear
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dc.volume.number54
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Leonelli and Varando 2024c - accepted version.pdf
Tamaño:
487.09 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: