The diameter of a stochastic matrix: A new measure for sensitivity analysis in Bayesian networks

dc.contributor.authorLeonelli, Manuele
dc.contributor.authorSmith, Jim
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-04T12:48:18Z
dc.date.issued2025-10
dc.description.abstractBayesian networks are one of the most widely used classes of probabilistic models for risk management and decision support because of their interpretability and flexibility in including heterogeneous pieces of information. In any applied modelling, it is critical to assess how robust the inferences on certain target variables are to changes in the model. In Bayesian networks, these analyses fall under the umbrella of sensitivity analysis, which is most commonly carried out by quantifying dissimilarities using Kullback-Leibler information measures. We argue that robustness methods based instead on the total variation distance provide simple and more valuable bounds on robustness to misspecification, which are both formally justifiable and transparent. We introduce a novel measure of dependence in conditional probability tables called the diameter to derive such bounds. This measure quantifies the strength of dependence between a variable and its parents. Furthermore, the diameter is a versatile measure that can be applied to a wide range of sensitivity analysis tasks. It is particularly useful for quantifying edge strength, assessing influence between pairs of variables, detecting asymmetric dependence, and amalgamating levels of variables. This flexibility makes the diameter an invaluable tool for enhancing the robustness and interpretability of Bayesian network models in applied risk management and decision support.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationLeonelli, M., & Smith, J. Q. (2025). The diameter of a stochastic matrix: A new measure for sensitivity analysis in Bayesian networks. International Journal of Approximate Reasoning, https://doi.org/10.1016/j.ijar.2025.109470
dc.identifier.doihttps://doi.org/10.1016/j.ijar.2025.109470
dc.identifier.issn1873-4731
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S0888613X25001112?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3912
dc.journal.titleInternational Journal of Approximate Reasoning: Uncertainty in Intelligent Systems
dc.language.isoen
dc.page.total44
dc.publisherElsevier
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.accessRightsinfo:eu-repo/date/embargoEnd/2027-10-01
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed
dc.subjectBayesian networks
dc.subjectEdge strength
dc.subjectSensitivity analysis
dc.subjectTotal variation distance
dc.subject.odsODS 16 - Paz, justicia e instituciones sólidas
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleThe diameter of a stochastic matrix: A new measure for sensitivity analysis in Bayesian networks
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dc.volume.number158
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Leonelli and Smith 2025 - accepted version.pdf
Tamaño:
1.48 MB
Formato:
Adobe Portable Document Format
Descargar
El fichero será visible a partir del 01-oct-2027

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: