Sensitivity analysis beyond linearity

dc.contributor.authorLeonelli, Manuele
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-11-25T14:15:51Z
dc.date.issued2019-10
dc.description.abstractA wide array of graphical models can be parametrized to have atomic probabilities represented by monomial functions. Such a monomial structure has proven very useful when studying robustness under the assumption of a multilinear model where all monomials have either zero or one exponents. Robustness in probabilistic graphical models is usually investigated by varying some of the input probabilities and observing the effects of these on output probabilities of interest. Here the assumption of multilinearity is relaxed and a general approach for one-way sensitivity analysis in non-multilinear models is presented. It is shown that in non-multilinear models sensitivity functions have a polynomial form, conversely to multilinear models where these are simply linear. The form of various divergences and distances under different covariation schemes is also formally derived. Proportional covariation is proven to be optimal in non-multilinear models under some specific choices of varied parameters. The methodology is illustrated throughout by an educational application.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationLeonelli, M. (2019). Sensitivity analysis beyond linearity. International Journal of Approximate Reasoning, 113, 106-118. https://doi.org/10.1016/j.ijar.2019.06.007
dc.identifier.doihttps://doi.org/10.1016/j.ijar.2019.06.007
dc.identifier.issn1873-4731
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S0888613X18307266#:~:text=Sensitivity%20analysis%20in%20BNs%20usually,a%20distance%20or%20divergence%20measure
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3889
dc.journal.titleInternational Journal of Approximate Reasoning
dc.language.isoen
dc.page.final118
dc.page.initial106
dc.page.total13
dc.publisherElsevier
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed
dc.subjectCovariationMonomial modelsProbabilistic graphical modelsSensitivity analysisStaged trees
dc.titleSensitivity analysis beyond linearity
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/publishedVersion
dc.volume.number113
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Sensitivity analysis beyond linearity.pdf
Tamaño:
529.63 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: