Where Does the Tail Start? Inflection Points and Maximum Curvature as Boundaries

dc.contributor.authorCremaschi, Andrea
dc.contributor.authorCabral, Rafael
dc.contributor.authorDe Iorio, Maria
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-11T11:37:07Z
dc.date.issued2025-06-22
dc.description.abstractUnderstanding the tail behaviour of distributions is crucial in statistical theory. For instance, the tail of a distribution plays a ubiquitous role in extreme value statistics, where it is associated with the likelihood of extreme events. There are several ways to characterize the tail of a distribution based on how the tail function, (Formula presented.), behaves when (Formula presented.). However, for unimodal distributions, where does the core of the distribution end and where does the tail begin? This paper addresses this unresolved question and explores the usage of delimiting points obtained from the derivatives of the density function of continuous random variables, namely, the inflection point and the point of maximum curvature. These points are used to delimit the bulk of the distribution from its tails. We discuss the estimation of these delimiting points and compare them with other measures associated with the tail of a distribution, such as kurtosis and extreme quantiles. We derive the proposed delimiting points for several known distributions and show that it can be a reasonable criterion to define the starting point of the tail of a distribution.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationCabral, R., De Iorio, M., & Cremaschi, A. (2025). Where does the tail start? Inflection Points and Maximum Curvature as Boundaries. Stat, 14(3), e70071. https://doi.org/10.1002/sta4.70071
dc.identifier.doihttps://doi.org/10.1002/sta4.70071
dc.identifier.issn2049-1573
dc.identifier.officialurlhttps://onlinelibrary.wiley.com/doi/full/10.1002/sta4.70071
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3974
dc.issue.number3
dc.journal.titleStat
dc.language.isoen
dc.publisherWiley
dc.relation.departmentSci Tech (Data Science)
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed
dc.subject.keyworddistribution tails
dc.subject.keywordheavy-tailed distributions
dc.subject.keywordkernel density estimation
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco12 Matemáticas
dc.titleWhere Does the Tail Start? Inflection Points and Maximum Curvature as Boundaries
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/publishedVersion
dc.volume.number14
dspace.entity.typePublication
relation.isAuthorOfPublication976c8dd3-a3ba-4b1a-9273-72c7ee16c39e
relation.isAuthorOfPublication.latestForDiscovery976c8dd3-a3ba-4b1a-9273-72c7ee16c39e

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Stat - 2025 - Cabral - Where Does the Tail Start Inflection Points and Maximum Curvature as Boundaries.pdf
Tamaño:
2.88 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: