Computing Statistical Moments Via Tensorization of Polynomial Chaos Expansions
| dc.contributor.author | Ballester Ripoll, Rafael | |
| dc.contributor.ror | https://ror.org/02jjdwm75 | |
| dc.date.accessioned | 2025-12-22T11:02:37Z | |
| dc.date.issued | 2024 | |
| dc.description.abstract | We present an algorithm for estimating higher-order statistical moments of multidimensional functions expressed as polynomial chaos expansions (PCE). The algorithm starts by decomposing the PCE into a low-rank tensor network using a combination of tensor-train and Tucker decompositions. It then efficiently calculates the desired moments in the compressed tensor domain, leveraging the highly linear structure of the network. Using three benchmark engineering functions, we demonstrate that our approach offers substantial speed improvements over alternative algorithms while maintaining a minimal and adjustable approximation error. Additionally, our method can calculate moments even when the input variable distribution is altered, incurring only a small additional computational cost and without requiring retraining of the regressor. | |
| dc.description.peerreviewed | Yes | |
| dc.description.status | Published | |
| dc.format | application/pdf | |
| dc.identifier.citation | Ballester-Ripoll, R. (2024). Computing statistical moments via tensorization of polynomial chaos expansions. SIAM/ASA Journal on Uncertainty Quantification, 12(2), 289-308. https://doi.org/10.1137/23M155428X | |
| dc.identifier.doi | https://doi.org/10.1137/23M155428X | |
| dc.identifier.issn | 2166-2525 | |
| dc.identifier.officialurl | https://epubs.siam.org/doi/10.1137/23M155428X | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14417/4021 | |
| dc.issue.number | 2 | |
| dc.journal.title | SIAM/ASA Journal on Uncertainty Quantification | |
| dc.language.iso | eng | |
| dc.page.final | 308 | |
| dc.page.initial | 289 | |
| dc.page.total | 20 | |
| dc.publisher | Society for Industrial and Applied Mathematics | |
| dc.relation.department | Applied Mathematics | |
| dc.relation.entity | IE University | |
| dc.relation.school | IE School of Science & Technology | |
| dc.rights | Attribution 4.0 International | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.keywords | polynomial chaos expansions | |
| dc.subject.keywords | statistical moments | |
| dc.subject.keywords | surrogate modeling | |
| dc.subject.keywords | tensor decompositions | |
| dc.subject.keywords | tensor train decomposition | |
| dc.subject.keywords | Tucker decomposition | |
| dc.subject.ods | ODS 9 - Industria, innovación e infraestructura | |
| dc.subject.unesco | 33 Ciencias Tecnológicas | |
| dc.title | Computing Statistical Moments Via Tensorization of Polynomial Chaos Expansions | |
| dc.type | info:eu-repo/semantics/article | |
| dc.version.type | info:eu-repo/semantics/acceptedVersion | |
| dc.volume.number | 12 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 6f756541-9eb4-430c-9664-1833c080ce57 | |
| relation.isAuthorOfPublication.latestForDiscovery | 6f756541-9eb4-430c-9664-1833c080ce57 |
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Computing Statistical Moments via Tensorization of Polynomial Chaos Expansions.pdf
- Tamaño:
- 5.07 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción:
