Computing Statistical Moments Via Tensorization of Polynomial Chaos Expansions

dc.contributor.authorBallester Ripoll, Rafael
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-22T11:02:37Z
dc.date.issued2024
dc.description.abstractWe present an algorithm for estimating higher-order statistical moments of multidimensional functions expressed as polynomial chaos expansions (PCE). The algorithm starts by decomposing the PCE into a low-rank tensor network using a combination of tensor-train and Tucker decompositions. It then efficiently calculates the desired moments in the compressed tensor domain, leveraging the highly linear structure of the network. Using three benchmark engineering functions, we demonstrate that our approach offers substantial speed improvements over alternative algorithms while maintaining a minimal and adjustable approximation error. Additionally, our method can calculate moments even when the input variable distribution is altered, incurring only a small additional computational cost and without requiring retraining of the regressor.
dc.description.peerreviewedYes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationBallester-Ripoll, R. (2024). Computing statistical moments via tensorization of polynomial chaos expansions. SIAM/ASA Journal on Uncertainty Quantification, 12(2), 289-308. https://doi.org/10.1137/23M155428X
dc.identifier.doihttps://doi.org/10.1137/23M155428X
dc.identifier.issn2166-2525
dc.identifier.officialurlhttps://epubs.siam.org/doi/10.1137/23M155428X
dc.identifier.urihttps://hdl.handle.net/20.500.14417/4021
dc.issue.number2
dc.journal.titleSIAM/ASA Journal on Uncertainty Quantification
dc.language.isoeng
dc.page.final308
dc.page.initial289
dc.page.total20
dc.publisherSociety for Industrial and Applied Mathematics
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordspolynomial chaos expansions
dc.subject.keywordsstatistical moments
dc.subject.keywordssurrogate modeling
dc.subject.keywordstensor decompositions
dc.subject.keywordstensor train decomposition
dc.subject.keywordsTucker decomposition
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleComputing Statistical Moments Via Tensorization of Polynomial Chaos Expansions
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dc.volume.number12
dspace.entity.typePublication
relation.isAuthorOfPublication6f756541-9eb4-430c-9664-1833c080ce57
relation.isAuthorOfPublication.latestForDiscovery6f756541-9eb4-430c-9664-1833c080ce57

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Computing Statistical Moments via Tensorization of Polynomial Chaos Expansions.pdf
Tamaño:
5.07 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: