Analysis of Tensor Approximation for Compression-Domain Volume Visualization

dc.contributor.authorSuter, Susanne
dc.contributor.authorPajarola, Renato
dc.contributor.authorBallester Ripoll, Rafael
dc.contributor.funderUniversity of Zürich
dc.contributor.funderSwiss National Science Foundation (SNSF)
dc.contributor.funderPeople Programme (Marie Curie Actions)
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-18T13:57:42Z
dc.date.issued2015-04
dc.description.abstractAs modern high-resolution imaging devices allow to acquire increasingly large and complex volume data sets, their effective and compact representation for visualization becomes a challenging task. The Tucker decomposition has already confirmed higher-order tensor approximation (TA) as a viable technique for compressed volume representation; however, alternative decomposition approaches exist. In this work, we review the main TA models proposed in the literature on multiway data analysis and study their application in a visualization context, where reconstruction performance is emphasized along with reduced data representation costs. Progressive and selective detail reconstruction is a main goal for such representations and can efficiently be achieved by truncating an existing decomposition. To this end, we explore alternative incremental variations of the CANDECOMP/PARAFAC and Tucker models. We give theoretical time and space complexity estimates for every discussed approach and variant. Additionally, their empirical decomposition and reconstruction times and approximation quality are tested in both C++ and MATLAB implementations. Several scanned real-life exemplar volumes are used varying data sizes, initialization methods, degree of compression and truncation. As a result of this, we demonstrate the superiority of the Tucker model for most visualization purposes, while canonical-based models offer benefits only in limited situations.
dc.description.peerreviewedYes
dc.description.sponsorshipThis work was supported in part by the Forschungskredit of the University of Zürich, the Swiss National Science Foundation (SNSF) (Projects nos. 200021_132521; ), as well as by the EU FP7 People Programme (Marie Curie Actions) under REA Grant Agreement no. 290227.
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationBallester-Ripoll, R., Suter, S. K., & Pajarola, R. (2015). Analysis of tensor approximation for compression-domain volume visualization. Computers & Graphics, 47, 34-47. https://doi.org/10.1016/j.cag.2014.10.002
dc.identifier.doihttps://doi.org/10.1016/j.cag.2014.10.002
dc.identifier.issn1873-7684
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/abs/pii/S0097849314001289
dc.identifier.urihttps://hdl.handle.net/20.500.14417/4017
dc.journal.titleComputers & Graphics
dc.language.isoeng
dc.page.final47
dc.page.initial34
dc.page.total15
dc.publisherElsevier
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.projectid200021_132521
dc.relation.projectid290227
dc.relation.schoolIE School of Science & Technology
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleAnalysis of Tensor Approximation for Compression-Domain Volume Visualization
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dc.volume.number47
dspace.entity.typePublication
relation.isAuthorOfPublication6f756541-9eb4-430c-9664-1833c080ce57
relation.isAuthorOfPublication.latestForDiscovery6f756541-9eb4-430c-9664-1833c080ce57

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Analysis of Tensor Approximation for Compression-Domain Volume Visualization.pdf
Tamaño:
3.87 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: