Staged trees and asymmetry-labeled DAGs

dc.contributor.authorVarando, Gherardo
dc.contributor.authorCarli, Federico
dc.contributor.authorLeonelli, Manuele
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-04T11:58:31Z
dc.date.issued2024-03-07
dc.description.abstractBayesian networks are a widely-used class of probabilistic graphical models capable of representing symmetric conditional independence between variables of interest using the topology of the underlying graph. For categorical variables, they can be seen as a special case of the much more general class of models called staged trees, which can represent any non-symmetric conditional independence. Here we formalize the relationship between these two models and introduce a minimal Bayesian network representation of a staged tree, which can be used to read conditional independences intuitively. A new labeled graph termed asymmetry-labeled directed acyclic graph is defined, with edges labeled to denote the type of dependence between any two random variables. We also present a novel algorithm to learn staged trees which only enforces a specific subset of non-symmetric independences. Various datasets illustrate the methodology, highlighting the need to construct models that more flexibly encode and represent non-symmetric structures.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationVarando, G., Carli, F., & Leonelli, M. (2024). Staged trees and asymmetry-labeled DAGs. Metrika, 1-28. https://doi.org/10.1007/s00184-024-00957-1
dc.identifier.doihttps://doi.org/10.1007/s00184-024-00957-1
dc.identifier.issn1435-926X
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s00184-024-00957-1
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3909
dc.journal.titleMetrika
dc.language.isoen
dc.page.total28
dc.publisherSpringer Nature
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed
dc.subjectAsymmetric graphical models
dc.subjectBayesian networks
dc.subjectContext-specific independence
dc.subjectStaged trees
dc.subjectStructural learning
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleStaged trees and asymmetry-labeled DAGs
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Varando et al 2025 - open access.pdf
Tamaño:
971.82 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: