Robust learning of staged tree models: A case study in evaluating transport services

dc.contributor.authorLeonelli, Manuele
dc.contributor.authorVarando, Gherardo
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-04T13:55:44Z
dc.date.issued2024-10
dc.description.abstractStaged trees are a relatively recent class of probabilistic graphical models that extend Bayesian networks to formally and graphically account for non-symmetric patterns of dependence. Machine learning algorithms to learn them from data have been implemented in various pieces of software. However, to date, methods to assess the robustness and validity of the learned, non-symmetric relationships are not available. Here, we introduce validation techniques tailored to staged tree models based on non-parametric bootstrap resampling methods and investigate their use in practical applications. In particular, we focus on the evaluation of transport services using large-scale survey data. In these types of applications, data from heterogeneous sources must be collated together. Staged trees provide a natural framework for this integration of data and its analysis. For the thorough evaluation of transport services, we further implement novel what-if sensitivity analyses for staged trees and their visualization using software.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationLeonelli, M., & Varando, G. (2024). Robust learning of staged tree models: A case study in evaluating transport services. Socio-Economic Planning Sciences, 95, https://doi.org/10.1016/j.seps.2024.102030
dc.identifier.doihttps://doi.org/10.1016/j.seps.2024.102030
dc.identifier.issn1873-6041
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S0038012124002295
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3915
dc.journal.titleSocio-Economic Planning Sciences
dc.language.isoen
dc.page.total17
dc.publisherElsevier
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed
dc.subjectBayesian networks
dc.subjectConditional independence
dc.subjectService evaluation
dc.subjectStaged trees
dc.subjectWhat-if analysis
dc.subject.odsODS 11 - Ciudades y comunidades sostenibles
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleRobust learning of staged tree models: A case study in evaluating transport services
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/publishedVersion
dc.volume.number95
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Leonelli and Varando 2024a - open access.pdf
Tamaño:
3.12 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: