Global sensitivity analysis of uncertain parameters in Bayesian networks
| dc.contributor.author | Ballester, Rafael | |
| dc.contributor.author | Leonelli, Manuele | |
| dc.contributor.ror | https://ror.org/02jjdwm75 | |
| dc.date.accessioned | 2025-12-03T17:45:28Z | |
| dc.date.issued | 2025-05 | |
| dc.description.abstract | Traditionally, the sensitivity analysis of a Bayesian network studies the impact of individually modifying the entries of its conditional probability tables in a one-at-a-time (OAT) fashion. However, this approach fails to give a comprehensive account of each inputs' relevance, since simultaneous perturbations in two or more parameters often entail higher-order effects that cannot be captured by an OAT analysis. We propose to conduct global variance-based sensitivity analysis instead, whereby n parameters are viewed as uncertain at once and their importance is assessed jointly. Our method works by encoding the uncertainties as n additional variables of the network. To prevent the curse of dimensionality while adding these dimensions, we use low-rank tensor decomposition to break down the new potentials into smaller factors. Last, we apply the method of Sobol to the resulting network to obtain n global sensitivity indices, one for each parameter of interest. Using a benchmark array of both expert-elicited and learned Bayesian networks, we demonstrate that the Sobol indices can significantly differ from the OAT indices, thus revealing the true influence of uncertain parameters and their interactions. | |
| dc.description.peerreviewed | yes | |
| dc.description.status | Published | |
| dc.format | application/pdf | |
| dc.identifier.citation | Ballester-Ripoll, R., & Leonelli, M. (2025). Global sensitivity analysis of uncertain parameters in Bayesian networks. International Journal of Approximate Reasoning, 180, 109368. https://doi.org/10.1016/j.ijar.2025.109368 | |
| dc.identifier.doi | https://doi.org/10.1016/j.ijar.2025.109368 | |
| dc.identifier.issn | 1873-4731 | |
| dc.identifier.officialurl | https://www.sciencedirect.com/science/article/abs/pii/S0888613X2500009X | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14417/3904 | |
| dc.journal.title | International Journal of Approximate Reasoning | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.department | Applied Mathematics | |
| dc.relation.entity | IE University | |
| dc.relation.school | IE School of Science & Technology | |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
| dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | |
| dc.rights.accessRights | info:eu-repo/date/embargoEnd/<2028-05-01> | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed | |
| dc.subject.ods | ODS 9 - Industria, innovación e infraestructura | |
| dc.subject.unesco | 33 Ciencias Tecnológicas | |
| dc.title | Global sensitivity analysis of uncertain parameters in Bayesian networks | |
| dc.type | info:eu-repo/semantics/article | |
| dc.version.type | info:eu-repo/semantics/acceptedVersion | |
| dc.volume.number | 180 | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 6f756541-9eb4-430c-9664-1833c080ce57 | |
| relation.isAuthorOfPublication | bc86b9eb-18b3-4fab-bf14-ad6f5509312f | |
| relation.isAuthorOfPublication.latestForDiscovery | 6f756541-9eb4-430c-9664-1833c080ce57 |
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Ballester and Leonelli 2025 - accepted version.pdf
- Tamaño:
- 1.64 MB
- Formato:
- Adobe Portable Document Format
El fichero será visible a partir del 01-may-2028
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 1.71 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción:
