Global sensitivity analysis of uncertain parameters in Bayesian networks

dc.contributor.authorBallester, Rafael
dc.contributor.authorLeonelli, Manuele
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-03T17:45:28Z
dc.date.issued2025-05
dc.description.abstractTraditionally, the sensitivity analysis of a Bayesian network studies the impact of individually modifying the entries of its conditional probability tables in a one-at-a-time (OAT) fashion. However, this approach fails to give a comprehensive account of each inputs' relevance, since simultaneous perturbations in two or more parameters often entail higher-order effects that cannot be captured by an OAT analysis. We propose to conduct global variance-based sensitivity analysis instead, whereby n parameters are viewed as uncertain at once and their importance is assessed jointly. Our method works by encoding the uncertainties as n additional variables of the network. To prevent the curse of dimensionality while adding these dimensions, we use low-rank tensor decomposition to break down the new potentials into smaller factors. Last, we apply the method of Sobol to the resulting network to obtain n global sensitivity indices, one for each parameter of interest. Using a benchmark array of both expert-elicited and learned Bayesian networks, we demonstrate that the Sobol indices can significantly differ from the OAT indices, thus revealing the true influence of uncertain parameters and their interactions.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationBallester-Ripoll, R., & Leonelli, M. (2025). Global sensitivity analysis of uncertain parameters in Bayesian networks. International Journal of Approximate Reasoning, 180, 109368. https://doi.org/10.1016/j.ijar.2025.109368
dc.identifier.doihttps://doi.org/10.1016/j.ijar.2025.109368
dc.identifier.issn1873-4731
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/abs/pii/S0888613X2500009X
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3904
dc.journal.titleInternational Journal of Approximate Reasoning
dc.language.isoen
dc.publisherElsevier
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.accessRightsinfo:eu-repo/date/embargoEnd/<2028-05-01>
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleGlobal sensitivity analysis of uncertain parameters in Bayesian networks
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dc.volume.number180
dspace.entity.typePublication
relation.isAuthorOfPublication6f756541-9eb4-430c-9664-1833c080ce57
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscovery6f756541-9eb4-430c-9664-1833c080ce57

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Ballester and Leonelli 2025 - accepted version.pdf
Tamaño:
1.64 MB
Formato:
Adobe Portable Document Format
Descargar
El fichero será visible a partir del 01-may-2028

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: