Uncovering drivers of EU carbon futures with Bayesian networks

dc.contributor.authorMaciejowski, Jan
dc.contributor.authorLeonelli, Manuele
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-11-18T18:17:12Z
dc.date.issued2026-01-15
dc.description.abstractThe European Union Emissions Trading System (EU ETS) is a key policy tool for reducing greenhouse gas emissions and advancing toward a net-zero economy. Under this scheme, tradeable carbon credits, European Union Allowances (EUAs), are issued to large emitters, who can buy and sell them on regulated markets. We investigate the influence of financial, economic, and energy-related factors on EUA futures prices using discrete and dynamic Bayesian networks to model both contemporaneous and time-lagged dependencies. The analysis is based on daily data spanning the third and fourth ETS trading phases (2013–2025), incorporating a wide range of indicators including energy commodities, equity indices, exchange rates, and bond markets. Results reveal that EUA pricing is most influenced by energy commodities, especially coal and oil futures, and by the performance of the European energy sector. Broader market sentiment, captured through stock indices and volatility measures, affects EUA prices indirectly via changes in energy demand. The dynamic model confirms a modest next-day predictive influence from oil markets, while most other effects remain contemporaneous. These insights offer regulators, institutional investors, and firms subject to ETS compliance a clearer understanding of the interconnected forces shaping the carbon market, supporting more effective hedging, investment strategies, and policy design.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationMaciejowski, J., & Leonelli, M. (2025). Uncovering Drivers of EU Carbon Futures with Bayesian Networks. arXiv preprint arXiv:2505.10384. https://doi.org/10.1016/j.apenergy.2025.127034
dc.identifier.doihttps://doi.org/10.1016/j.apenergy.2025.127034
dc.identifier.issn1872-9118
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/abs/pii/S0306261925017647
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3863
dc.journal.titleApplied Energy
dc.language.isoen
dc.publisherElsevier
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.accessRightsinfo:eu-repo/date/embargoEnd/<2028-01-15>
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed
dc.subjectBayesian networks
dc.subjectCarbon Pricing
dc.subjectEU Emissions Trading System
dc.subjectEUA Futures
dc.subjectEnvironmental Policy
dc.titleUncovering drivers of EU carbon futures with Bayesian networks
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Applied Energy.pdf
Tamaño:
4.18 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: