Computing Sobol indices in probabilistic graphical models

dc.contributor.authorBallester, Rafael
dc.contributor.authorLeonelli, Manuele
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-01T18:43:11Z
dc.date.issued2022-09
dc.description.abstractWe show how to apply Sobol’s method of global sensitivity analysis to measure the influence exerted by a set of nodes’ evidence on a quantity of interest expressed by a Bayesian network. Our method exploits the network structure so as to transform the problem of Sobol index estimation into that of marginalization inference and, unlike Monte Carlo based estimators for variance-based sensitivity analysis, it gives exact results when exact inference is used. Moreover, the method supports the case of correlated inputs and it is efficient as long as eliminating the inputs’ ancestors is computationally affordable. The proposed algorithms are inspired by the field of tensor networks and generalize earlier tensor sensitivity techniques from the acyclic to the cyclic case. We demonstrate our method on three medium to large Bayesian networks in the areas of structural reliability and project risk management.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationBallester-Ripoll, R., & Leonelli, M. (2022). Computing Sobol indices in probabilistic graphical models. Reliability Engineering & System Safety, 225, https://doi.org/10.1016/j.ress.2022.108573
dc.identifier.doihttps://doi.org/10.1016/j.ress.2022.108573
dc.identifier.issn1879-0836
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/abs/pii/S0951832022002204
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3897
dc.journal.titleReliability Engineering & System Safety
dc.language.isoen
dc.publisherElsevier
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleComputing Sobol indices in probabilistic graphical models
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication6f756541-9eb4-430c-9664-1833c080ce57
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscovery6f756541-9eb4-430c-9664-1833c080ce57

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Ballester and Leonelli 2022a - accepted version.pdf
Tamaño:
628.18 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: