Predicting and understanding shooting performance in professional biathlon: a Bayesian approach

dc.contributor.authorLeonelli, Manuele
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-04T12:32:31Z
dc.date.issued2025-04-24
dc.description.abstractBiathlon is a unique winter sport that combines precision rifle marksmanship with the endurance demands of cross-country skiing. We develop a Bayesian hierarchical model to predict and understand shooting performance using data from the 2021/22 Women’s World Cup season. The model captures athlete-specific, position-specific, race-type, and stage-dependent effects, providing a comprehensive view of shooting accuracy variability. By incorporating dynamic components, we reveal how performance evolves over the season, with model validation showing strong predictive ability at both overall and individual levels. Our findings highlight substantial athlete-specific differences and underscore the value of personalised performance analysis for optimising coaching strategies. This work demonstrates the potential of advanced Bayesian modelling in sports analytics, paving the way for future research in biathlon and similar sports requiring the integration of technical and endurance skills.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationLeonelli, M. (2025). Predicting and understanding shooting performance in professional biathlon: a Bayesian approach. International Journal of Performance Analysis in Sport, 1-20. https://doi.org/10.1080/24748668.2025.2500155
dc.identifier.doihttps://doi.org/10.1080/24748668.2025.2500155
dc.identifier.issn1474-8185
dc.identifier.officialurlhttps://www.tandfonline.com/doi/full/10.1080/24748668.2025.2500155?src=
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3911
dc.journal.titleInternational Journal of Performance Analysis in Sport
dc.language.isoen
dc.page.total24
dc.publisherTaylor & Francis
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.accessRightsinfo:eu-repo/date/embargoEnd/2027-04-24
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed
dc.subjectBayesian statistics
dc.subjectbiathlon
dc.subjecthierarchical models
dc.subjectperformance analysis
dc.subjectshooting
dc.subject.odsODS 3 - Salud y bienestar
dc.subject.unesco33 Ciencias Tecnológicas
dc.titlePredicting and understanding shooting performance in professional biathlon: a Bayesian approach
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Predicting and understanding shooting performance in professional biathlon a Bayesian approach.pdf
Tamaño:
4.12 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: