Publication:
Estimating Latent-Variable Panel Data Models Using Parameter-Expanded SEM Methods

dc.contributor.authorWei, Siqi
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-04-07T10:38:56Z
dc.date.available2025-04-07T10:38:56Z
dc.date.issued2024-07-15
dc.description.abstractThis article presents new estimation algorithms for three types of dynamic panel data models with latentvariables: factor models, discrete choice models, and persistent-transitory quantile processes. The newmethods combine the parameter expansion (PX) ideas of Liu, Rubin, and Wu with the stochastic expectation-maximization (SEM) algorithm in likelihood and moment-based contexts. The goal is to facilitate conver-gence in models with a large space of latent variables by improving algorithmic efficiency. This is achieved byspecifying expanded models within the M step. Effectively, we are proposing new estimators for the pseudo-data within iterations that take into account the fact that the model of interest is misspecified for drawsbased on parameter values far from the truth. We establish the asymptotic equivalence of the likelihood-based PX-SEM to an alternative SEM algorithm with a smaller expected fraction of missing informationcompared to the standard SEM based on the original model, implying a faster global convergence rate.Finally, in simulations we show that the new algorithms significantly improve the convergence speed relativeto standard SEM algorithms, sometimes dramatically so, by reducing the total computing time from hoursto a few minutes.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationWei, S. (2024). Estimating Latent-Variable Panel Data Models Using Parameter-Expanded SEM Methods. Journal of Business & Economic Statistics, 1-14. https://doi.org/10.1080/07350015.2024.2365783.
dc.identifier.doihttps://doi.org/10.1080/07350015.2024.2365783
dc.identifier.issn07350015
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3707
dc.journal.titleJournal of business & economics statistics
dc.language.isoen
dc.page.final14
dc.page.initial1
dc.page.total14
dc.publisherTaylor & Francis
dc.relation.departmentEconomics
dc.relation.entityIE University
dc.relation.schoolIE Business School
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/deed
dc.subject.keywordAlgorithmic efficiency
dc.subject.keywordDiscrete choice model
dc.subject.keywordDynamic factor model
dc.subject.keywordDynamic quantile model
dc.subject.keywordPX-EM
dc.subject.keywordStochastic EM
dc.titleEstimating Latent-Variable Panel Data Models Using Parameter-Expanded SEM Methods
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication7967236f-2e1a-4143-96ae-2c81aefa76f9
relation.isAuthorOfPublication.latestForDiscovery7967236f-2e1a-4143-96ae-2c81aefa76f9
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Estimating Latent-Variable Panel Data Models Using Parameter-Expanded SEM Methods.pdf
Size:
2.94 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.83 KB
Format:
Item-specific license agreed to upon submission
Description: