Staged trees for discrete longitudinal data

dc.contributor.authorCarter, Jack
dc.contributor.authorLeonelli, Manuele
dc.contributor.authorRiccomagno, Eva
dc.contributor.authorUgolini, Alessandro
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-03T18:08:03Z
dc.date.issued2025-01-26
dc.description.abstractIn this paper we investigate the use of staged tree models for discrete longitudinal data. Staged trees are a type of probabilistic graphical model for finite sample space processes. They are a natural fit for longitudinal data because a temporal ordering is often implicitly assumed and standard methods can be used for model selection and probability estimation. However, model selection methods perform poorly when the sample size is small relative to the size of the graph and model interpretation is tricky with larger graphs. This is exacerbated by longitudinal data which is characterized by repeated observations. To address these issues we propose two approaches: the longitudinal staged tree with Markov assumptions which makes some initial conditional independence assumptions represented by a directed acyclic graph and marginal longitudinal staged trees which model certain margins of the data.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationCarter, J. S., Leonelli, M., Riccomagno, E., & Ugolini, A. (2025). Staged trees for discrete longitudinal data. Metrika, 1-34. https://doi.org/10.1007/s00184-024-00987-9
dc.identifier.doihttps://doi.org/10.1007/s00184-024-00987-9
dc.identifier.issn1435-926X
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s00184-024-00987-9
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3905
dc.journal.titleMetrika
dc.language.isoen
dc.publisherSpringer Nature
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed
dc.subjectChain event graphs
dc.subjectDiscrete data
dc.subjectLongitudinal studies
dc.subjectStaged trees
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleStaged trees for discrete longitudinal data
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Carter et al 2025 - accepted version.pdf
Tamaño:
1.62 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: