Sensitivity analysis in multilinear probabilistic models

dc.contributor.authorLeonelli, Manuele
dc.contributor.authorGörgen, Christiane
dc.contributor.authorSmith, Jim
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-01T16:50:26Z
dc.date.issued2017-10
dc.description.abstractSensitivity methods for the analysis of the outputs of discrete Bayesian networks have been extensively studied and implemented in different software packages. These methods usually focus on the study of sensitivity functions and on the impact of a parameter change to the Chan–Darwiche distance. Although not fully recognized, the majority of these results rely heavily on the multilinear structure of atomic probabilities in terms of the conditional probability parameters associated with this type of network. By defining a statistical model through the polynomial expression of its associated defining conditional probabilities, we develop here a unifying approach to sensitivity methods applicable to a large suite of models including extensions of Bayesian networks, for instance context-specific ones. Our algebraic approach enables us to prove that for models whose defining polynomial is multilinear both the Chan–Darwiche distance and any divergence in the family of ϕ-divergences are minimized for a certain class of multi-parameter contemporaneous variations when parameters are proportionally covaried.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationLeonelli, M., Görgen, C., & Smith, J. Q. (2017). Sensitivity analysis in multilinear probabilistic models. Information Sciences, 411, 84-97. https://doi.org/10.1016/j.ins.2017.05.010
dc.identifier.doihttps://doi.org/10.1016/j.ins.2017.05.010
dc.identifier.issn1872-6291
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/abs/pii/S0020025517307259
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3895
dc.journal.titleInformation Sciences
dc.language.isoen
dc.page.final97
dc.page.initial84
dc.page.total14
dc.publisherElsevier
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleSensitivity analysis in multilinear probabilistic models
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Leonelli et al. 2017 - accepted version from Glasgow.pdf
Tamaño:
823.19 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: