Tensor Algorithms for Advanced Sensitivity Metrics

dc.contributor.authorParedes, Enrique
dc.contributor.authorPajarola, Renato
dc.contributor.authorBallester Ripoll, Rafael
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-22T12:22:20Z
dc.date.issued2018
dc.description.abstractFollowing up on the success of the analysis of variance (ANOVA) decomposition and the Sobol indices (SI) for global sensitivity analysis, various related quantities of interest have been defined in the literature, including the effective and mean dimensions, the dimension distribution, and the Shapley values. Such metrics combine up to exponential numbers of SI in different ways and can be of great aid in uncertainty quantification and model interpretation tasks, but are computationally challenging. We focus on surrogate-based sensitivity analysis for independently distributed variables, namely, via the tensor train (TT) decomposition. This format permits flexible and scalable surrogate modeling and can efficiently extract all SI at once in a compressed TT representation of their own. Based on this, we contribute a range of novel algorithms that compute more advanced sensitivity metrics by selecting and aggregating certain subsets of SI in the tensor compressed domain. Drawing on an interpretation of the TT model in terms of deterministic finite automata, we are able to construct explicit auxiliary TT tensors that encode exactly all necessary index selection masks. Having both the SI and the masks in the TT format allows efficient computation of all aforementioned metrics, as we demonstrate in a number of example models.
dc.description.peerreviewedYes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationBallester-Ripoll, R., Paredes, E. G., & Pajarola, R. (2018). Tensor algorithms for advanced sensitivity metrics. SIAM/ASA Journal on Uncertainty Quantification, 6(3), 1172-1197. https://doi.org/10.1137/17M1160252
dc.identifier.doihttps://doi.org/10.1137/17M1160252
dc.identifier.issn2166-2525
dc.identifier.officialurlhttps://epubs.siam.org/doi/10.1137/17M1160252
dc.identifier.urihttps://hdl.handle.net/20.500.14417/4024
dc.issue.number3
dc.journal.titleSIAM/ASA Journal on Uncertainty Quantification
dc.language.isoeng
dc.page.final1197
dc.page.initial1172
dc.page.total25
dc.publisherSociety for Industrial and Applied Mathematics
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.keywordsvariance-based sensitivity analysis
dc.subject.keywordssurrogate modeling
dc.subject.keywordstensor train decomposition
dc.subject.keywordsSobol indices
dc.titleTensor Algorithms for Advanced Sensitivity Metrics
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dc.volume.number6
dspace.entity.typePublication
relation.isAuthorOfPublication6f756541-9eb4-430c-9664-1833c080ce57
relation.isAuthorOfPublication.latestForDiscovery6f756541-9eb4-430c-9664-1833c080ce57

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tensor Algorithms for Advanced Sensitivity Metrics.pdf
Tamaño:
494.53 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: