The YODO algorithm: An efficient computational framework for sensitivity analysis in Bayesian networks

dc.contributor.authorBallester, Rafael
dc.contributor.authorLeonelli, Manuele
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-03T15:40:40Z
dc.date.issued2023-08
dc.description.abstractSensitivity analysis measures the influence of a Bayesian network's parameters on a quantity of interest defined by the network, such as the probability of a variable taking a specific value. In the literature, this influence is often measured by computing the partial derivative with respect to the network parameters. However, this can become computationally expensive in large networks with thousands of parameters. We propose an algorithm combining automatic differentiation and exact inference to calculate the sensitivity measures in a single pass efficiently. It first marginalizes the whole network once, using e.g. variable elimination, and then backpropagates this operation to obtain the gradient with respect to all input parameters. Our method can be used for one-way and multi-way sensitivity analysis and the derivation of admissible regions. Simulation studies highlight the efficiency of our algorithm by scaling it to massive networks with up to 100,000 parameters and investigate the feasibility of generic multi-way analyses. Our routines are also showcased over two medium-sized Bayesian networks: the first modeling the country risks of a humanitarian crisis, the second studying the relationship between the use of technology and the psychological effects of forced social isolation during the COVID-19 pandemic. An implementation of the methods using the popular machine learning library PyTorch is freely available.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationBallester-Ripoll, R., & Leonelli, M. (2023). The YODO algorithm: An efficient computational framework for sensitivity analysis in Bayesian networks. International Journal of Approximate Reasoning, 159, 108929. https://doi.org/10.1016/j.ijar.2023.108929
dc.identifier.doihttps://doi.org/10.1016/j.ijar.2023.108929
dc.identifier.issn1873-4731
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/abs/pii/S0888613X23000609
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3901
dc.journal.titleInternational Journal of Approximate Reasoning
dc.language.isoen
dc.publisherElsevier
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/deed
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleThe YODO algorithm: An efficient computational framework for sensitivity analysis in Bayesian networks
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication6f756541-9eb4-430c-9664-1833c080ce57
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscovery6f756541-9eb4-430c-9664-1833c080ce57

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Ballester and Leonelli 2023 - accepted version.pdf
Tamaño:
828.8 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: