Deep Reinforcement Learning for the Electric Vehicle Routing Problem With Time Windows

dc.contributor.authorLin, Bo
dc.contributor.authorGhaddar, Bissan
dc.contributor.authorNathwani, Jatin
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2026-02-11T17:23:54Z
dc.date.issued2021-08-20
dc.description.abstractThe past decade has seen a rapid penetration of electric vehicles (EVs) as more and more logistics and transportation companies start to deploy electric vehicles (EVs) for service provision. In order to model the operations of a commercial EV fleet, we utilize the EV routing problem with time windows (EVRPTW). In this paper, we propose an end-to-end deep reinforcement learning framework to solve the EVRPTW. In particular, we develop an attention model incorporating the pointer network and a graph embedding layer to parameterize a stochastic policy for solving the EVRPTW. The model is then trained using policy gradient with rollout baseline. Our numerical studies show that the proposed model is able to efficiently solve EVRPTW instances of large sizes that are not solvable with current existing approaches.
dc.description.peerreviewedYes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationLin, B., Ghaddar, B., & Nathwani, J. (2021). Deep reinforcement learning for the electric vehicle routing problem with time windows. IEEE Transactions on Intelligent Transportation Systems, 23(8), 11528-11538. http://doi.org/10.1109/TITS.2021.3105232
dc.identifier.doihttp://doi.org/10.1109/TITS.2021.3105232
dc.identifier.issn1558-0016
dc.identifier.officialurlhttps://ieeexplore.ieee.org/document/9520134
dc.identifier.urihttps://hdl.handle.net/20.500.14417/4105
dc.issue.number8
dc.journal.titleIEEE Transactions on Intelligent Transportation Systems
dc.language.isoeng
dc.page.final11538
dc.page.initial11528
dc.page.total11
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.titleDeep Reinforcement Learning for the Electric Vehicle Routing Problem With Time Windows
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dc.volume.number23
dspace.entity.typePublication
relation.isAuthorOfPublication3e8d108e-2dfb-4db4-bc22-f229f807562f
relation.isAuthorOfPublication.latestForDiscovery3e8d108e-2dfb-4db4-bc22-f229f807562f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2010.pdf
Tamaño:
892.5 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: