A symbolic algebra for the computation of expected utilities in multiplicative influence diagrams

dc.contributor.authorLeonelli, Manuele
dc.contributor.authorRiccomagno, Eva
dc.contributor.authorSmith, Jim
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-01T15:55:09Z
dc.date.issued2017-06-26
dc.description.abstractInfluence diagrams provide a compact graphical representation of decision problems. Several algorithms for the quick computation of their associated expected utilities are available in the literature. However, often they rely on a full quantification of both probabilistic uncertainties and utility values. For problems where all random variables and decision spaces are finite and discrete, here we develop a symbolic way to calculate the expected utilities of influence diagrams that does not require a full numerical representation. Within this approach expected utilities correspond to families of polynomials. After characterizing their polynomial structure, we develop an efficient symbolic algorithm for the propagation of expected utilities through the diagram and provide an implementation of this algorithm using a computer algebra system. We then characterize many of the standard manipulations of influence diagrams as transformations of polynomials. We also generalize the decision analytic framework of these diagrams by defining asymmetries as operations over the expected utility polynomials.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationLeonelli, M., Riccomagno, E., & Smith, J. Q. (2017). A symbolic algebra for the computation of expected utilities in multiplicative influence diagrams. Annals of Mathematics and Artificial Intelligence, 81(3), 273-313. https://doi.org/10.1007/s10472-017-9553-y
dc.identifier.doihttps://doi.org/10.1007/s10472-017-9553-y
dc.identifier.issn1573-7470
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s10472-017-9553-y
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3894
dc.issue.number3
dc.journal.titleAnnals of Mathematics and Artificial Intelligence
dc.language.isoen
dc.page.final313
dc.page.initial273
dc.page.total41
dc.publisherSpringer Nature
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed
dc.subjectAsymmetric decision problems
dc.subjectComputer algebra
dc.subjectInfluence diagrams
dc.subjectSymbolic inference
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleA symbolic algebra for the computation of expected utilities in multiplicative influence diagrams
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/publishedVersion
dc.volume.number81
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
s10472-017-9553-y (1).pdf
Tamaño:
1.65 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: