Structural learning of simple staged trees

dc.contributor.authorLeonelli, Manuele
dc.contributor.authorVarando, Gherardo
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-04T15:44:45Z
dc.date.issued2024-02-15
dc.description.abstractBayesian networks faithfully represent the symmetric conditional independences existing between the components of a random vector. Staged trees are an extension of Bayesian networks for categorical random vectors whose graph represents non-symmetric conditional independences via vertex coloring. However, since they are based on a tree representation of the sample space, the underlying graph becomes cluttered and difficult to visualize as the number of variables increases. Here, we introduce the first structural learning algorithms for the class of simple staged trees, entertaining a compact coalescence of the underlying tree from which non-symmetric independences can be easily read. We show that data-learned simple staged trees often outperform Bayesian networks in model fit and illustrate how the coalesced graph is used to identify non-symmetric conditional independences.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationLeonelli, M., & Varando, G. (2024). Structural learning of simple staged trees. Data Mining and Knowledge Discovery, 38(3), 1520-1544. https://doi.org/10.1007/s10618-024-01007-0
dc.identifier.doihttps://doi.org/10.1007/s10618-024-01007-0
dc.identifier.issn1573-756X
dc.identifier.officialurlhttps://link.springer.com/article/10.1007/s10618-024-01007-0
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3916
dc.journal.titleData Mining and Knowledge Discovery
dc.language.isoen
dc.page.final1544
dc.page.initial1520
dc.page.total27
dc.publisherSpringer Nature
dc.relation.departmentApplied Mathematics
dc.relation.entityIE University
dc.relation.schoolIE School of Science & Technology
dc.rightsAttribution 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed
dc.subjectAsymmetric graphical models
dc.subjectBayesian networks
dc.subjectContext-specific independence
dc.subjectStaged trees
dc.subjectStructural learning
dc.subject.odsODS 9 - Industria, innovación e infraestructura
dc.subject.unesco33 Ciencias Tecnológicas
dc.titleStructural learning of simple staged trees
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationbc86b9eb-18b3-4fab-bf14-ad6f5509312f
relation.isAuthorOfPublication.latestForDiscoverybc86b9eb-18b3-4fab-bf14-ad6f5509312f

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Leonelli and Varando 2024b - accepted version.pdf
Tamaño:
566.06 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: