Risk-averse algorithmic support and inventory management

dc.contributor.authorNarayanan, Pranadharthiharan
dc.contributor.authorSomasundaram, Jeeva
dc.contributor.authorSeifert, Matthias
dc.contributor.rorhttps://ror.org/02jjdwm75
dc.date.accessioned2025-12-05T12:07:53Z
dc.date.issued2025-05-01
dc.description.abstractWe study how managers allocate resources in response to algorithmic recommendations that are programmed with specific levels of risk aversion. Using the anchoring and adjustment heuristic, we derive our predictions and test them in a series of multi-item newsvendor experiments. We find that highly risk-averse algorithmic recommendations have a strong and persistent influence on order decisions, even after the recommendations are no longer available. Furthermore, we show that these effects are similar regardless of factors such as source of advice (i.e., human vs. algorithm) and decision autonomy (i.e., whether the algorithm is externally assigned or chosen by the subjects themselves). Finally, we disentangle the effect of risk attitude from that of anchor distance and find that subjects selectively adjust their order decisions by relying more on algorithmic advice that contrasts with their inherent risk preferences. Our findings suggest that organizations can strategically utilize risk-averse algorithmic tools to improve inventory decisions while preserving managerial autonomy.
dc.description.peerreviewedyes
dc.description.statusPublished
dc.formatapplication/pdf
dc.identifier.citationNarayanan, P., Somasundaram, J., & Seifert, M. (2025). Risk-averse algorithmic support and inventory management. European Journal of Operational Research, 322(3), 993-1004. https://doi.org/10.1016/j.ejor.2024.11.013
dc.identifier.doihttps://doi.org/10.1016/j.ejor.2024.11.013
dc.identifier.issn1872-6860
dc.identifier.officialurlhttps://www.sciencedirect.com/science/article/pii/S0377221724008634
dc.identifier.urihttps://hdl.handle.net/20.500.14417/3929
dc.issue.number3
dc.journal.titleEuropean Journal of Operational Research
dc.language.isoen
dc.page.final1004
dc.page.initial993
dc.page.total11
dc.publisherElsevier
dc.relation.departmentOperations and Business Analytics
dc.relation.entityIE University
dc.relation.schoolIE Business School
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.accessRightsinfo:eu-repo/date/embargoEnd/2027-05-01
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectdecision analysis
dc.subjectAlgorithm
dc.subjectRisk aversion
dc.subjectDecision support systems
dc.subjectAnchoring
dc.subject.odsODS 8 - Trabajo decente y crecimiento económico
dc.subject.unesco53 Ciencias Económicas::5311 Organización y dirección de empresas ::5311.04 Organización de recursos humanos
dc.titleRisk-averse algorithmic support and inventory management
dc.typeinfo:eu-repo/semantics/article
dc.version.typeinfo:eu-repo/semantics/acceptedVersion
dc.volume.number322
dspace.entity.typePublication
relation.isAuthorOfPublication2c764812-5db7-4867-b0a2-42f42e12bfa3
relation.isAuthorOfPublication57e82a12-bd27-4bf6-bf62-dbe56581f808
relation.isAuthorOfPublication.latestForDiscovery2c764812-5db7-4867-b0a2-42f42e12bfa3

Bloque original

Mostrando 1 - 2 de 2
Cargando...
Miniatura
Nombre:
AlgoRisk_Manuscript_EJOR.pdf
Tamaño:
1.15 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
AlgoRisk_Appendices_4_Dec_EJOR.pdf
Tamaño:
1.25 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed to upon submission
Descripción: